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NONEQUILIBRIUM THERMODYNAMICS OF
MONODISPERSE SUSPENSIONS

G. P. Yasnikov UDC 536,70+532,135

The internal-energy and entropy balance equations of monodisperse suspensions are averaged
over the statistical ensemble of possible spatial configurations of solid spherical particles.

The present work is based on the method of statistical averaging of the balance equations, valid for a
liquid and at the level of individual particles, developed in [1, 2].

For the local physical quantities G(t, _r: CN) appearing in these equations, which depend onhydrodynam-~
ic— T — and phase — CN(?(I), cesy T ) —variables (N is the number of particles), the average over the
distribution function &t/Cy) is introduced.

The commutation properties of the averaging operator constructed in this way allow equations describing
the behavior (on average) of continua which model the phases of a suspension to be obtained.

The account below is based on the matrix formalism introduced in [3]. The explicit form of the matrices
and the operations involving them which are used in the present work are given in the Appendix. As in [31,
consideration is restricted to a mixture of a liquid with solid spherical particles without diffusion, chemical
reactions, or phase transitions. The phase materials are assumed to be incompressible and rotation of the
particles insignificant.

"Microscopic" balance equations for the mechanical and total energy valid in the liquid and inside the
particles may be written in the form [4]

d 1 - > — =
DE?QEW+)=—v42w+&v% @
D 5.3,
& = v EN—vd, {2)

After multiplying Eqgs. (1) and (2) by ® — Eq. (A.1) — and averaging, the following relations are obtained:

<WL%Q%W+Q=-<%4X%H%&@%9% @
de a 7 o.7
(8D £L) = —(8y- (21> — (07T, @
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Term-by-term subtraction in Eqgs. (2)and (1) and in Egs. (4) and (3) gives the internal-energy balance equations

D %:43:3?/_3.7,,, ®)
<QD£>_ 8S:uV > 7
g’ T (ORI — 8y ). (6)

The terms appearing on the right-hand sidesof Eqgs. (3), (4), and (6) may be transferred using Eqs. (A.2)-(A.6),
G=2,V, Jq .
(8y-2.V) =ay-Splee-v) + (T'-V" )1+ (b—a) (6, (V-T) y v +
+b—a) (87D V ) +b—2a)(8T:y V) =ay-ISp(8o-v) + @
+(Z V) )+ b—a)fv-b—a) (0 V-I V> b—2a)(8Z:yV),
where f: — 6,6 .2 ) is the phase-interaction force, and
(82:9V) =aSp(go:yv) +a(Z:y V') +(b—a)(8Z:yV); (8)
(8y-J,> =ay-Sp(d9) + (b—a) <O, VI, > . ©
The matrices o, v, and q are defined in Eq. (A. 7). The last terms in Eqs, (7)~(9) characterize surface
effects. and may be expressed in terms of integrals over the surface of the test particle. The left-hand

sides of Eqs. (3), (4), and (6) may be transformed as in Eq. (A.8). Using Eqs. (7), (9), and (A.8), the total-
energy balance equation — Eq. (4) — may be written in the form

% (De) - y-(Dev+d ¢ 8¢ V') = —ay- [Sp(96-v)-- (= V' )] —

—ay-Sp(8q) ~(b—a)f-v-(b—a)<0,(y-Z)> -v—(b—a)(0T:yV)—(b—a)(by-J .
Analogously, the mechanical-energy balance equation — Eq. (3) — may be written in the form (3]
0 1 1 >, -1
— [ —DvZ — d(BV'.V') -D¥) - — Dv?
o ( 9 v 2 { > T ) \Y [ 2 viv
1 (1)

- ;— dv( OV T + - 4OV (77-V) ) + DV d< By ) -

+0*-vJ = —a%-[Sp(ﬁo-v)T(ZﬂV’)]-;—(b——a)?-v - (b-—a)(O,({r’-Z) Vs —;—aSp(ﬁozev)—‘.—a'{_ S’:EV’).

The terms on the right-hand sides of Eqs. (10) and (11) on which the operator 7 acts represent the fluxes of
mechanical and thermal energy, while the other terms act as the corresponding sources and are equal to the
power of the forces acting in unit volume of the suspension, The matrices appearing in these equations are de-
fined in Egs. (A.7)-(A.10).

Subtracting Eq. (11) term by term from Eq. (10) and taking into account that s = V¥/2 + § + u, the
averaged internal-energy balance equation is obtained. The same result may be obtained if the left-hand
side of Eq. (6) is rewritten using Eq. (A.8), and Eqgs. (8) and (9) are used in the right-hand side:

O Dw 4+ -@uv4d( 8wV )= —ay-Sp(g) —aSp B yv) —
ot (12)

—a(8Z:yVyLb—a)(By-T,>—(b—a)(BZ:vV).

It is evident from Egs. (6) and (12) that the internal energy changes as a result of heat fluxes and the power
developed by internal stress but, in contrast to the equation for a single-phase medium, Eq. (12) includes
terms associated with surface effects.

The averaged entropy balance equation is derived using the "microscopic" balance equation and the funda-
mental Gibbs equation,

ds T, - @3)
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pr % _p 4 se. Y, (14)
dt dt

where 2 is the reversible part of the pressure tensor.

After multiplying Eqs. (13) and (14) by ® and averaging, the following relations are obtained:

- 15
0D &y — oy, + (8o, t9)
ds NI = DI AN

<6D}—t—>=(9DT gt— - HAY) . (16)

The first term on the right-hand side of Eq. (16) may be expressed using Eq. (5). This involves multiplying
Eq. (5) by ®T ! and averaging, with the result

(8D 1;1} — —(8T2V:gVy — 8TV, an

Here s -z - 50 the irreversible part of the pressure tensor.
Using Eqgs. (A.2), (A.3), and (A.8), Eq. (15) is transformed to give
% (D9)+ V-Dsv+d (BT y) = —ay-Sp @) + b—a) < 0,9-T, > +aSp(0o,+ b —2a) (80,5,  (1§)
The matrices Jg04 and s are given in Eq. (A.11).
The first term in Eq. (17) is transformed using Eqs. (A.2) and (A.6) (G = Z(i), _\;, T_i) and the approxi-
mate relations
IT 1= (x4 IT) et — 2T ..., (19)
(OT 129 : gV ) =aSp(v 80 1 yv) ~aSprt( O3V 1y V') +
+(b—a) (0T 15V :gVy —r2¢(OTZV gV + ..., (20)

and the second term in Eq. (16) is written in the form
(OT1y-J, > = (8y-@, 7)) — (8],-yTt) = ay-Sp(6ar™) +

- - - - = 1
+aSp (8qr2-yT) - (b—a) (8,7 -(T,TY » — (b—a) <8y T-yT™t > + @1)

+aSp(qre (OYT')) +ay Sp(x2 (O T')) +a (O, -y (™ T)) + ...

If Eqs. (20) and (21) are substituted into Eq. (17), the left-hand side of Eq. (17) is transformed using Eq. (A.8),
and terms of the order of the square of the pulsation divided by the square of the mean temperature are
neglected, then the entropy balance equation is obtained in the form

S (b—a) (87, yT™) —aSp(r 196t : yv)LaSp (1 (O g V) — b—a) (OT'EV:y V).
The matrices s, 7, q, and a(l) are given in Eqs, (A.11) and (A.12), If the terms on the right-hand sides of
Egs. (22) and (18) are compared, their physical meaning becomes clear. The first two terms
Vle=—ay-SpJ) — (b —a) ( 8,7-J, ) = ay-Sp(8qr™) — (b —a) {8y -(T™/g) ) 23)

define the energy fluxes (per unit volume of mixture) due to heat transfer in the mean temperature fields of the
liquid and solid phases and at the particle surface (in the latter the pulsational components may be explicitly
separated). The remaining terms constitute the contribution to the energy production of irreversible heat
transfer and viscous fiction, which appears in the mean and pulsational motion of liquids perturbed by particles
and at the particle surface,
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Gy = aSp (003) + (b - a) ¢ Olol ) = — asp (ﬂQ‘t_zne-[) —
—aSp(qu? (YT’ > —aSp(rtae 1 yv) +aSp(r1( 8V 1y V) +
+(b—a) (8, VT™) + b—a) (OT12V: 5V 5. 24

Formally introducing the effective entropy flux Iz and the effective energy production o, of the suspension, the
entropy balance equation takes the same form in Eq. (13) as for a single-phase medium,

2 09 +7- O+ dCOsT)) = —T ket os
The entropy balance for the suspension phases is written in the usual form: for the liquid
a"T (edsovo + do ( 8sV" 3 ) = — V(075" +paitr") — < 0 - (T, 7)) —
— (640752 Vo -+ 04772 V8) — (600 75? (OVT ) +pgy- 772 (09T ) ) +

(0T, - TT Y — (v'e0l) : ¥ U + v7'po() i y 1)) —

— (5 (GED YV ot (BED g V)4 (8 TIEP g Ty, (25)
for the particles
% (0dssy) + ¥ -(0dssioy + dy (BsV* > )= (8, T2YT Y + (Oy-(,T9 > — (8T 15V : g V). 26)

Adding together Eqgs. (25) and (26) gives the entropy balance equation for the mixture, To establish the mutual
influence of the irreversible processes, itis necessary to know the symmetry properties of the medium [4].
According to the Curie theorem, vector and tensor phenomena do not interfere in an isotropic medium. In
this case, for example, the heat-conduction law in the medium may be written phenomenologically on the basis
of Eq. (24) in the form

- L - g L - -
9=+ pq= o=k V(% + BT ) —p bV (E+ COTT ). @7
1

Here Ly = AyT5, Ly = \7{ are phenomenological coefficients; Ay and A; are the thermal conductivities of the
phases. The same relation may be obtained by formal averaging of the "microscopic" Fourier phenomeno-
logical law '

Yq = —AyT, 28)
where A = 6 Ay + 647 is the generalized thermal conductivity. On the other hand, the averaged value of the
heat- flux in Eq. (28) may be written in the form

g=<Ty> = — v (et + p1) — (i — Do) COVT ), 29)

completely equivalent to Eq. (27). Equation (29) has already been derived and used by Buevich in considering
heat conduction in suspensions.*

Analogous consideration of viscous dissipation allows the effective stress tensor to be written as follows
13 .
6=(Z)y=—(Z9 432Dy — —epyl + 2 [v-SpovI‘.
The superscript s denotes the symmetric part of the mixture's strain-rate tensor,

The equations considered in the present work and in [1-3] completely describe the thermal and hydro-
dynamic behavior of suspensions of liquid with solid particles. It remains of interest to include diffusion and
chemical reactions in the given scheme, and to take rotation of the particles into account.

*Yu, A. Buevich, Paper at the Fifth All-Union Conference on Heat and Mass Transfer [in Russian], ITMO,
Minsk (1976).
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APPENDIX

' 8 0 N SN
— [0 — - IR PORAT
0 — (0 6 ) , SpB =1, 6= 2[ n@—jr —rsy). (A1)

For the generalized function C with the mean (®8G), the following formulas are valid [3]:

(OG) =9g, (G)=g=S5p(BG) =S5pdg,

(sz)
(8G) =aSp(0g) + (b —2) (8G),
(8yG) = ay Sp(9g) + (b—a) (8,vG), (A.3)
e 0 { o 0) _ (1 0)
=(0) = , g= , atb=1I= . (A.4)
ﬁ<><0p)g(0gt 01
For the generalized function
G_—“Z, —i/,—:‘lq, 1!39 €, Uy S, .- (A'S)
the pulsational components
1G = g +1G7, (A.6)
gzoz(co 0y vz(u(, 3) qz(QGE) A7
0 01} 0 vy 0 q
may be introduced.
The averaged value of the substantial derivative dG/dt is [3]
(D8 48y _ 9 pg) 5. Dgv+d(0GT ), (A.8)
dt ot
ed, 0 dy O
D =0ydy+8ydy, D=|["° ) d=(° ) A.9
odo + 91dy (0 od, 0 4, A.9
“:(eo 0), v= (P 0), ot =d(6vvV), (A.10)
0 & 0 ¥
§ = (50 0) » Js = (Jso 0 ) ) 6.9 = (Gso 0 ) » (A.ll)
\0 S 0 ‘—isi 0 Ogt
R | s gti)
_ (To 0), T—1=(T° 0 ) am:("o 0 ) (A.12)
0 7 0 ! L0 o
NOTATION
Local quantities:
\—f is the velocity;
i/ is the potential energy;
z® is the viscous-pressure tensor;
z(e) is the reversible part of pressure tensor;
z is the complete pressure tensor;
Jq is the heat-flux density;
0y, 61 are the generalized functions defined in the Appendix;
8 is the specific entropy;
u is the specific internal energy;
A is the generalized thermal conductivity;
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is the temperature;

is the entropy flux density;
is the entropy production;
is the specific total energy.

Matrices with elements obtained on averaging local quantities:

4

v
o
q

is the porosity;
is the velocity;
is the pressure tensor;
are the heat fluxes;
is the generalized density;
is the total energy;
is the temperature;
is the entropy;
is the entropy flux;
is the entropy production;
is the effective pulsational stress;
is the viscous stress;
is the mean phase-interaction force;
are the phase-material densities;

Ly, Ly are the phenomenological coefficients;

€ is the porosity;

P, is the liquid pressure;

Ho is the liquid viscosity;

N is the Heaviside function;

a is the particle radius.
Subscripts:

0 liquid;

1 particles.

Symbols:

G.) is the averaging over an ensemble;

)
()

is the scalar product;
is the doubly convoluted tensor-element product;

A bar above a symbol denotes the pulsational component,
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